United Kingdom, London

Game Theory

when 14 July 2019 - 3 August 2019
language English
duration 3 weeks
credits 7.5 EC
fee GBP 1980

Conflict exists not just in most economic scenarios but in almost every human interaction, be it economic, political or social and this course will adopt that broad perspective in developing analyses, results and insights.

This course is designed for students with a background in microeconomic theory and will be taught at the intermediate level. The topic of this course, Game Theory, is an essential tool for analyzing strategic interactions between economic agents. It can help us explain anything from why farmers overgraze a common piece of land to the price at which a buyer and seller agree to trade. This course equips students with the skills to use game theory to model real world scenarios and apply game theoretic methods to solve these models.

This course is aimed at students studying Economics at University but it is also suitable for Mathematics students.

During the course students will be exposed to non-cooperative game theory, evolutionary game theory and cooperative game theory. Throughout the majority of the course, we assume hyper-rational agents acting in their own interest as we give students a firm grounding in the logic and methods of non-cooperative game theory. We apply standard techniques such as domination of strategies, Nash Equilibrium and backwards induction across a wide variety of games. When relaxing this hyper-rationality assumption, students will then see how evolutionary game theory gives very similar predictions and thus offers a second justification of Nash Equilibrium. Although, we go slightly further to argue that some equilibria are more stable than others.

As will be seen, in many games like the Prisoner’s Dilemma, game theory predicts suboptimal outcomes, since each agent acts in their self-interest, which may not be the common interest. One way to escape this is to allow agents to write binding contracts with each other, which enables us to shift the focus from strategies to payoffs. We take a brief venture into cooperative game theory to see how agents will split the gains from forming coalitions.

One common application of game theory is to bargaining. This pertains to any situation whereby two or more agents have an incentive to reach a mutually beneficial agreement, but conflicting interests over the terms of such an agreement. Students will see some of the myriad of situations bargaining theory can be applied to and learn what predictions bargaining theory can help us make about how these situations will be resolved.

The topics to be covered include:

- What game theory is about and why it is “right”
- How to translate a real world scenario into a game theoretic model
- Expected utility theory
- Simultaneous and sequential move games
- Nash Equilibrium
- Domination of strategies
- Backwards Induction
- Games of Incomplete Information
- Mixed strategies
- Evolutionary game theory
- Cooperative game theory
- Models of bargaining
- Bertrand Model
- Cournot Model
- Repeated Games

By the end of this module, students should be able to:

- Understand the different types of games and their uses in strategic thinking.
- Analyse different games and use a variety of tools to find equilibria.
- Understand expected utility theory and the role of probabilities in explaining behaviour.
- Construct models of bargaining and negotiation and how they can be applied to models of competition.
- Distinguish between the different strands of game theory.
- Justify the predictions of non-cooperative game theory an evolutionary perspective.
- Assess the importance of information in games an dhow this can change behaviours.
- Understand the way in which game theoretic models can be applied to a variety of real-world scenarios in economics and in other areas.

Course leader

Professor Abhinay Muthoo, Dean of Warwick in London and Professor of Economics at the Department of Economics, University of Warwick

Target group

Undergraduate and Postgraduate students studying Economics modules as part of their degree

Course aim

As students will discover, game theory is an essential tool for understanding of a wide range real world phenomena. Among others, this course aims to answer three vital questions:

What is game theory about?
How do I apply game theory?
Why is game theory right?

Students should develop an appreciation for how the details of a game such as when players move and why they know can have a large impact on outcomes.

This course aims to equip students with a wide range of game theoretic skills, which will be used in formulating and solving models of their own. By exposing students to a wide variety of topics and applications, this course gives students some idea of the vast range of phenomena one can use game theory to model and explain. This course will also improve powers of logic and encourage students to think strategically in their future everyday life.

Credits info

7.5 EC
You must check with the relevant office of your institution if you will be awarded credit, but many institutions will allow this. In general, you’ll earn 3 credits in the US system, and 7.5 ECTS in the European system. Warwick will provide any necessary supporting evidence to help evaluate the worth of the course.

Fee info

GBP 1980: Tuition fee (includes a 10% early booking discount, social programme and guest lecture series)

Scholarships

We offer enhanced discounts for Warwick alumni, Warwick study abroad partners and group bookings of 5+ students