Colchester, United Kingdom

Python Programming for Social Scientists

online course
when 24 July 2023 - 28 July 2023
language English
duration 1 week
credits 4 EC
fee GBP 478

Learn how to conduct data collection and complex data analysis with hands-on exercises and practical tips to help you start your journey in the world of Python.

Need to know

Basic statistical knowledge is required. No programming experience needed.

Before the course

There are around three hours of preparation for Day 1. This includes:

• Creating a Google drive folder and sharing it with the Instructor
• Joining the Slack group
• Downloading Zoom
• Watching videos
• Downloading the files for the Day 1 class.

In depth

Day 1: Introduction to Python and Jupyter Notebook

Learn how to operate Jupyter Notebooks, through Google Collab. You will cover different data types in Python, loops, and conditional statements.
Homework: Set of programming games.

Day 2: Data collection I – Web scraping

Python is a popular language to extract data from the internet. Learn how to extract data from semi-structured websites and save the results into .xlsx and .csv files.
Homework: Scraper for a pre-defined website.

Day 3: Data analysis I – Intro to data cleaning, analysis and nested data structures

Data cleaning is one of the most challenging parts of a data scientist's work. Learn how to extract relevant information from messy data and create data structures that are efficient to use.
Homework: Write functions – combine loops and conditions.

Day 4: Data analysis II – Data analysis with Pandas and data visualisation

A picture is worth a thousand words. Besides introducing Python's most popular data analysis toolkits (Pandas, Matplotlib, Seaborn), you will learn how to convey the findings of your analysis effectively by creating appealing and scientifically valid visualisations. You will work in groups to analyse a pre-defined database, then present your findings to the class.
Homework: Exploratory data analysis with visualisations on a pre-defined data set.

Day 5: Data analysis II – Statistical modelling

How to conduct statistical modelling in Python. The focus will be on the two most popular libraries:
• Statsmodels Great for regressions and statistical tests.
• SciPy Performs machine learning.

You'll also learn about PCA and freely available data sets you might choose for your post-class assignment.

How the course will work online

Introductory pre-recorded videos and required readings will help you prepare for classes. The course is structured into five live Zoom sessions, each lasting at least 2 hours. The live sessions will focus on introducing new materials, followed by coding work, either alone or in groups, with support from the Instructor and Teaching Assistant.

Homework assignments on Days 1–4 will deepen your knowledge of each topic. The Instructor and TA will check your homework, and you can book one-to-one meetings to discuss.

Course leader

Orsolya Vasarhelyi is a postdoctoral fellow at the University of Warwick, Center for Interdisciplinary Research. Her research focuses on the gender differences in career development in project-based environments. She is a Python enthusiast!

Target group

Advanced students, researchers, and professional analysts.

Course aim

Python is one of the most popular programming languages of data science, used in natural language processing, machine learning, and artificial intelligence. This five-day Python programming course is for social scientists who want to learn how to conduct data collection and complex data analysis with Python.

The course will be highly interactive, with hands-on exercises and practical tips to help you start your journey in the world of Python. By the end of the course, you will have gained a strong foundation in Python programming and be able to apply your new skills to your own research projects.

To reinforce your learning, you will have after-class assignments from Monday to Thursday, where you will apply what you learned in class to real-world problems. These assignments will give you the opportunity to practice and improve your programming skills and receive feedback from the course instructors.

Credits info

4 EC
You can earn up to four credits for attending this course.
3 ECTS credits – Attend 100% of live sessions and engage fully with class activities.
4 ECTS credits – Attend 100% of live sessions, engage fully with class activities and complete a post-class assignment.

Fee info

GBP 478: ECPR Member
GBP 956: ECPR Non-Member


Funding applications for the 2023 ECPR Summer School in Research Methods and Techniques are now closed.
For more details on funding opportunities for ECPR's other events, please visit our website.