Aarhus, Denmark

Extracellular Vesicles in Health and Disease

when 5 August 2024 - 23 August 2024
language English
duration 3 weeks
credits 5 EC
fee EUR 675

EVs have been shown to be released from all three domains of life. In recent years, EVs have been recognized to play an essential role in health and disease by trafficking bioactive molecules between cells. This way, EVs are important in disease progression since both diseased cells and pathogens release EVs. This also suggests that EVs can be used as diagnostic markers for such conditions. The therapeutic potential of EVs ('native form' or modified as drug delivery systems) and their use as vaccines are also currently being explored, all underpinning the interdisciplinary nature of EV research.

In this course, we will cover basic aspects of EVs, which will include their nomenclature, biogenesis, release and uptake, as well as EV cargos. Different isolation methods will be introduced, such as ultracentrifugation, size exclusion chromatography and precipitation techniques, and their pros and cons will be discussed. Different methods to identify, characterize and enumerate EVs will be presented and discussed as well as how to explore their content. As it is not a trivial task to work with EVs, we will discuss critical considerations during the collection and isolation of EVs from various sample types, including non-model organisms. We will then discuss how to explore EV function in vitro and in vivo and, lastly the diagnostic and therapeutic potential of EVs (e.g. as drug delivery systems, vaccines).

During the practical sessions, you will learn how to isolate EVs using size exclusion chromatography (qEV). The size distribution and numbers of EVs isolated will be determined using nanoparticle tracking analysis (NTA) and EV uptake in cells in vitro. EV proteomes and presence of classical EV makers will be assessed using proteomics.

Though the focus of the course will be on mouse and human EVs, we will also cover and discuss EVs from non-model organisms, including outer membrane vesicles (OMVs) and some of their specific challenges and opportunities (e.g. drug delivery system). As many of the methods and considerations for working with EVs are the same irrespectively of their source, this course is relevant for most people interested or already active in the EV field.

Course leader


Target group

Master's level

Fee info

EUR 675: EU/EEA citizens
EUR 1520: NON EU/EEA citizens


No scholarships available

Register for this course
on course website